
IJSRSET1622350 | Received : 20 April 2016 | Accepted : 27 April 2016 | March-April 2016 [(2)2: 1048-1054]  

 

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

1048 

 
Analysis of Cohesion and Coupling Metrics for Object Oriented System 

 

Annushri Sethi
1
, Prof. Narendra Pal Singh Rathore

2
 

 
1
Student, Department of Computer Science, TCET, Indore, India 

2
Professor, TRUBA College of Engineering and Technology, Indore-Rao Bypass Road, India 

 
ABSTRACT 
 

In software engineering modularization is way to divide software project in to multiple independent and discrete 

modules. After complete module conquers make as software. Means modules design use divide and conquer rule. 

Cohesion and Coupling measure the quality of design of modules and interaction between modules. In this paper 

studies have been done to identify complexity between inheritance and interface by applying the cohesion and 

coupling metrics. Two program of c# implementing one with inheritance and other with interface are taken and 

measurement is done. The metrics value obtained is compared to prove which concept is good and beneficial for c# 

developer to use. 

Keywords: Cohesion, Coupling, Modularization, Inheritance, Interface. 

 

I. INTRODUCTION 

 

When a software system program is modularized, its 

tasks area unit divided into many modules supported 

some characteristics. As we know, modules area unit set 

of directions place along so as to attain some tasks. They 

are although, thought-about as single entity however 

could confer with one another to figure along. There are 

a unit measures by that the standard of a style of 

modules and their interaction among them is often 

measured. These measures area unit known as coupling 

and cohesion. 

 

Cohesion is a very important attribute similar to the 

standard of the abstraction captured by the category into 

account. Sensible abstractions generally exhibit high 

cohesion. Cohesion refers to the degree of the 

relationships among the members during a category. A 

category is cohesive once its members area unit 

extremely related .A extremely cohesive module is one 

whose components have a detailed relationship among 

them so as to supply the only real practicality of the 

module. On the contrary, a coffee cohesive module has 

some components that have very little relation with 

others that indicates that the module appears to supply 

many unrelated functionalities.  

 

It is extensively accepted that the upper the cohesion of 

a module is, the simpler the module is to develop, 

maintain, and reuse, and therefore the less fault prone  

 

it's. it's a very important object-oriented software system 

quality attribute. The degree of sophistication cohesion 

offers a sign for the standard of sophistication style. In 

object-oriented paradigm, the category cohesion are 

often thought because the mensuration of connection 

among the members of sophistication. Metrics area unit 

suggests that for attaining a lot of correct estimations of 

project milestones, and developing a computer code that 

contains stripped-down faults. it's wide received that 

object bound development needs a unique manner of 

thinking than ancient structured development and 

software system comes area unit shifting to object bound 

code. Object bound metrics to measure properties of 

object bound Code. 

 

1.1 Cohesion: 

Cohesion may be a live that defines the degree of intra-

dependability inside components of a module. The 

bigger the cohesion, the higher is that the program 

style.in below figure 1 describe how to determine 

cohesion module. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

1051 

 

 
 

Figure 1 : Determine Cohesion Modules  

 

Their area unit seven kinds of cohesion, namely – 

 

1. Coincidental cohesion- its unplanned and random 

cohesion, which could be the results of breaking the 

program into smaller modules for the sake of 

modularization. as a result of it's unplanned, it's 

going to serve confusion to the programmers and is 

usually not accepted. 

2. Logical cohesion-once logically classified 

components area unit place along into a module, it's 

known as logical cohesion. 

3. Temporal Cohesion - Once components of module 

area unit organized such they're processed at the 

same purpose in time, it's known as temporal 

cohesion. 

4. Procedural cohesion - Once components of module 

area unit classified along, that area unit dead 

consecutive so as to perform a task, it's known as 

procedural cohesion. 

5. Communicative cohesion - Once components of 

module area unit classified along, that area unit dead 

consecutive and work on same information 

(information), it's known as communicative 

cohesion. 

6. Successive cohesion - once components of module 

area unit classified as a result of the output of one 

part is input to a different and then on, it's known as 

successive cohesion. 

7. Practical cohesion - it's thought-about to be the best 

degree of cohesion, and it's extremely expected. 

Components of module in practical cohesion area 

unit classified as a result of all of them contributes 

to one well defined perform. It can even be reused. 

 

 

 
Figure 2 : Type of Cohesion and its importance 

 

1.2 Coupling: 

 

Coupling may be a live that defines the amount of inter-

dependability among modules of a program. It tells at 

what level the modules interfere and act with one 

another. The lower the coupling, the higher the program. 

 

 
Figure 3 : Type of Coupling and its importance 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

1052 

 

Their area unit five levels of coupling, namely – 

1. Content coupling - once a module will directly 

access or modify or confer with the content of 

another module, it's known as content level 

coupling. 

2. Common coupling- once multiple modules have 

scan and write access to some international 

information, it's known as common or 

international coupling. 

3. Control coupling- Two modules area unit known 

as control-coupled if one among them decides the 

perform of the opposite module or changes its 

flow of execution. 

4. Stamp coupling- once multiple modules share 

common system and work on completely different 

a part of it, it's known as stamp coupling. 

5. Information coupling- Data coupling is once two 

modules act with one another by suggests that of 

passing information (as parameter). If a module 

passes system as parameter, then the receiving 

module ought to use all its elements. 

 

II. METHODS AND MATERIAL 
 

A. Literature Review 

 

The concept of an interface in object-oriented 

programming is quite old. Software engineering has 

been using interfaces for more than 25 years. Many 

metrics are available to measure class, method, 

inheritance, polymorphism and system level. There is no 

significant work on the code of human computer 

interfaces. In literature, relatively little information has 

been published on interface metrics. Those metrics  

provide only little information about the quality and 

usability of the interfaces. Sue of interface leads to the 

high cohesion and make the code more reusable.  

 

In Year -2010, V. Krishnapriya and Dr. K. Ramar have 

measured interface concept by using coupling metrics on 

design based and have proved interface is more effective 

in use then inheritance to increase reusability of a code 

in object oriented programming [1]. In this paper, 

measurement of inheritance and interface is calculated 

using cohesion metrics using a example and prove the 

usage of interface increased the reusability James m. 

Bieman and byungkyookang published a Paper on 

Cohesion and reuse in object oriented system explaining 

the TCC and LCC on C++ Program [4]. 

 

There are many metrics to find class cohesion but no 

standard metric or definition has been generally 

accepted, out of available [Fenton &Pfleeger 1998], 

[Counsell et al. 2002] and [Etzkorn et al. 2004]. A 

reasonable metric to measure class cohesion should give 

an insight to the relatedness among the methods of a 

class while considering the impacts of inheritance 

paradigm on local class cohesion.  

Like class cohesion, there is no standard metric or 

definition for class coupling [Fenton &Pfleeger 1998]. 

However, In OO design class coupling is a measurement 

of class dependence on other classes.We will attempt to 

measure a class coupling on the basis of UML 

relationships.  

Metrics for measuring class cohesion and class coupling 

are supposed to share same input data for their 

respective measurements. By the same set of input data 

we mean class member attributes, member methods, and 

usage of attributes by the methods. We will attempt to 

find mutual relationships between class cohesion and 

class coupling metrics by analyzing the results of 

experiment statistically.  

Literature on the subject of the software evolution 

clearly introduces the erosive trends in the software 

architecture while meeting the changes imposed by the  

software evolution. In this thesis, we will attempt to 

identify such erosive trends with the help of class 

cohesion and coupling metrics. Based on the literature 

review, we suppose that both class cohesion and 

coupling should follow deteriorating trends while 

evolution in the software architecture.  

B. Cohesion and Coupling Matrices In Object 

Oriented System 

Cohesion is the degree to which methods within a class 

are related to one another and work together to provide 

well-bounded behavior. Effective object oriented 

designs maximize cohesion because cohesion promotes 

encapsulation. Coupling is a measure of the strength of 

association established by a connection from one entity 

to another. Classes are coupled when a message is 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

1053 

passed between objects; when methods declared in one 

class use methods or attributes of another class. 

Inheritance is the hierarchical relationship among classes 

that enables programmers to reuse previously defined 

objects including variables and operators.  

 
Figure 3: Relationship between Cohesion and Coupling 

 

III. RESULTS AND DISCUSSION 

 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

1054 

 
 

Measure Cohesion for class using Inheritances and 

Interfaces  

 

Inheritance is one of the fundamental concepts of Object 

Orientated programming, in which a class ”gains” all of 

the attributes and operations of the class it inherits from, 

and can override some of them, as well as add more 

attributes and operations of its own. In Object Oriented 

Programming, inheritance is a way to compartmentalize 

and reuse code by creating collections of attributes, 

thing and behaviors called objects that can be based on 

previously created objects.  

 

Lack of Cohesion in Methods (LCOM) as the number of 

pairs of methods operating on disjoint sets of instance 

variables, reduced by the number of method pairs acting 

on at least one shared instance variable. 

 

IV. CONCLUSION 

 
The purpose of this thesis is to finding the approach and 

way to identify complexity between inheritance and 

interface programming through cohesion metrics in 

object oriented programs. Metrics measure certain 

properties of software system by mapping them to 

numbers (or to other symbols) according to well-defined, 

objective measurement rules. Code Metrics are 

measurements of the static state of the project’s Code 

and also used for assessing the size and in some cases 

the quality and complexity of software. Analysis and 

maintenance of Object-Oriented (OO) software is 

expensive and difficult. Thus, measuring the 

relationships has become a prerequisite to develop 

efficient techniques for analysis and maintenance. 

Various cohesion metrics have been proposed and used 

in past empirical investigations; however none of these 

have taken the run-time properties of a program into 

account. As program behavior is a function of its 

Author Name / Title Journal Strength  Weakness  
N. Rajkumar1 

”Measuring Cohesion 

And Coupling In Object 

Oriented System Using 

Java Reflection” 

 

ARPN Journal of 

Engineering and 

Applied Sciences 

This paper proposes a set of new 

measures to find coupling and cohesion 

in a developmental system using Java 

reflection components to assess the 

usability. It will predict the fault in an 

object-oriented system. 

 

Next version will 

calculate coupling 

and cohesion metrics 

for UML 

representations 

 

Martin Hitz 

  “Measuring Coupling 

and Cohesion In Object-

Oriented Systems “ 

http://www.isys.uni-

klu.ac.at/PDF/1995-

0043-MHBM.pdf 

This distinction refers to dynamic 

dependencies between objects on one 

hand and static dependencies between 

implementations. 

important aspects of 

software quality at 

run-time and during 

the maintenance 

phase, respectively. 

 

Aaron B. Binkley 

  “A classical view of 

object-oriented cohesion 

and coupling” 

 

http://citeseerx.ist.ps

u.edu/viewdoc/down

load?doi=10.1.1.99.

4519&rep=rep1&typ

e=pdf 

Evidence is starting to accumulate that 

this paradigm is indeed as effective as 

has been suggested 

 

Most of the metrics 

used in conjunction 

with the object-

oriented paradigm 

are, in fact, classical 

metrics. 

Mr. KailashPatidar 

 “Coupling and Cohesion 

Measures in Object 

Oriented Programming” 

 

International Journal 

of Advanced 

Research in 

Computer Science 

and Software 

Engineering 

 

A large numbers of metrics have been 

built and proposed for measuring 

properties of object-oriented software 

such as size, inheritance, cohesion and 

coupling. The coupling is an important 

aspect in the evaluation of reusability 

and maintainability of components or 

services. 

 

To achieve 

consistent 

and satisfying 

results, empirical 

data obtained from 

reallife 

software engineering 

projects 

Shweta Sharma 

“A review of Coupling 

and Cohesion metricsin 

Object Oriented 

Environment” 

International Journal 

of Computer Science 

& Engineering 

Technology 

(IJCSET) 

 

This paper focuses on two very 

significant factors of complexity 

measurement of software which are 

coupling and cohesion. An extensive 

study of approximately all types of 

coupling and cohesion metrics has been 

reported in this paper 

 

Very little work has 

been done in areas 

of dynamic coupling 

and cohesion metrics 

and need further 

more investigations 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

20 

operational environment as well as the complexity of the 

source code, static metrics may fail to quantify all the 

underlying dimensions of coupling and cohesion. In our 

future work, we can apply various other cohesion 

metrics to identify better complexity between 

inheritance and interface programming. 

 

 

V. REFERENCES 

 
[1] V. Krishnapriya, K. Ramar, "Exploring the 

Difference Between Object Oriented Class 

Inheritance and Interfaces Using Coupling 

Measures," ace, pp.207-211, 2010 International 

Conference on Advances in Computer 

Engineering, 2010 

[2] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, 

RuchikaMalhotra. “Empirical Study of Object-

Oriented  Metrics”,2006 

[3] Martin Hitz, BehzadMontazeri.“Measuring 

Coupling and   Cohesion.In Object-Oriented 

Systems” in Angewandte Informatik (1995) 

[4] James M. Bieman  and Byung-

kyookang.“Cohesion and Reuse in Object 

Oriented System” Department of Computer 

Science, Colorado State University Fort 

Collins,Colorado,1995 

[5] Shyam R.  Chidamberand  Chris F. Kemerer” A 

Metrics Suite For object Oriented Design” IEEE 

Transactions on software Engineering, Vol. 20, 

No. 6, June 1994  

[6] KrishnaprasadThirunarayan.” Inheritance in 

Programming      Languages” Department of 

Computer Science and Engineering ,Wright State 

University ,Dayton, OH-45435 

[7] ArtiChhikara Maharaja Agrasen College, Delhi, 

India. R.S.Chhillar “Applying Object Oriented 

Metrics to C#(C Sharp) Programs”Deptt. Of 

Computer Sc.And Applications, Rohtak, 

India.SujataKhatriDeenDyalUpadhyaya College, 

Delhi, India(2011) 

[8] Christopher L. Brooks, Chrislopher G. Buell, “A 

Tool for Automatically Gathering Object-Oriented 

Metrics”, IEEE, 1994 

[9] Friedrich Stiemann, Philip Mayer and Andreas 

Meibner, “DecouplingClasses with Inferred 

Interfaces”, Proceedings of the 2006 

ACMSymposium on Applied Computing, 

P.No:1404 – 1408. 

[10] Pradeep Kumar Bhatia, Rajbeer Mann, “ An 

Approach to Measure Software Reusability of OO 

Design”, Proceedings of 2nd International 

Conference on Challenges & Opportunities in 

InformationTechnology(COIT-2008),RIMT-

IET,MandiGobissndgarh, March 29, 2008. 


